Physics 352 - Part 1 - Optics

MIDTERM EXAMINATION

Format: Closed book. No calculators. There are 4 problems.
Total Time: 50 minutes.
Write clearly!

N -slit interference:

$$
I(\theta)=I_{0} \frac{\sin ^{2}(N \pi D \sin (\theta) / \lambda)}{\sin ^{2}(\pi D \sin (\theta) / \lambda)}
$$

For a convex spherical interface of radius R, the object and image distances are related by

$$
\frac{n_{1}}{s_{o}}+\frac{n_{2}}{s_{i}}=\frac{\left(n_{2}-n_{1}\right)}{R}
$$

in the paraxial regime. The distances s_{o} and s_{i} are measured as positive to the left and right of the interface, respectively.

Single-slit interference:

$$
\begin{aligned}
& I(\theta)=I_{0}\left(\frac{\sin (\beta)}{\beta}\right)^{2}, \text { where } \\
& \beta=\pi a \sin \theta / \lambda .
\end{aligned}
$$

The thin lens formula for a lens of index of refraction $n_{\text {lens }}$ in air:

$$
\frac{1}{s_{o}}+\frac{1}{s_{i}}=\left(n_{\text {lens }}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)
$$

where R_{1} and R_{2} are the radii of curvature of the left and right lens surfaces, respectively.

Some trigonometric identities:

$$
\begin{aligned}
& \sin (u \pm v)=\sin u \cos v \pm \cos u \sin v ; \quad \cos (u \pm v)=\cos u \cos v \mp \sin u \sin v \\
& \sin (2 x)=2 \sin (x) \cos (x) \\
& 1+\cos 2 x=2 \cos ^{2} x
\end{aligned}
$$

(1, 3 pts.) Spy Satellites. You're in charge of purchasing technology for a spy organization. In a back alley, Mr. K comes to you with a photo of two oryxes, shown below. (An oryx is a species of antelope.) He claims the photo was taken by a satellite, specifically one with a telescope mirror 1 m in diameter, orbiting $20,000 \mathrm{~km}$ above the Earth's surface, observing visible light (wavelength $\lambda \approx 0.5 \times 10^{-6} \mathrm{~m}$. Do you believe Mr. K? Why or why not? Be quantitative, but note that a very rough calculation is sufficient. You do not need a calculator.

Figure 1. Two oryxes. From Google Earth (24 57' 17.99"S, 15 51' 30.54"E, in Namibia).

We can resolve the horns in the photo.
Their size by $\approx 0.1 \mathrm{~m}$.

The corresponding angular with

$$
\begin{aligned}
\theta_{h} \times \frac{D y}{L} & =\frac{10^{-1} \mathrm{~m}}{2 \times 10^{7} \mathrm{~m}} \\
= & \frac{1}{2} \cdot 10^{-8} \text { radians }
\end{aligned}
$$

The satellite's angular resolution $\theta_{r} \approx \frac{\lambda}{a}=\frac{\frac{1}{2} \cdot 10^{-6} \mathrm{~m}}{1 \mathrm{~m}}$ $=\frac{1}{2} \cdot 10^{-6}$ radians
$\frac{\theta_{r}>\theta_{h} \text {, so there's no wa }}{\text { sharp image of the horns. }}$ Don't believe Mr.K.
(2, 6 pts.) A Prism. A quartz prism with the shape of a right isosceles triangle - the corners have angles of $90^{\circ}, 45^{\circ}$, and 45° - is surrounded by vacuum. We shine white light normally (i.e. perpendicularly) incident on one of the legs. See the figure.

As you probably learned long ago, white light is composed of light of many colors. We see colored rays exit the prism as indicated in the figure, ie. with blue ($\lambda \approx 450 \mathrm{~nm}$) "on top" and $\operatorname{red}(\lambda \approx 650 \mathrm{~nm}$) "below."

Quartz, like all materials, has slightly different indexes of refraction for different wavelengths of light; in other words, n is a function of λ. Below I've shown two possible graphs of $n(\lambda)$ for quartz - a dotted plot (A) and a dashed plot (B). One is correct; the other is wrong. Based on the arrangement of the colored rays noted above, which curve is correct? Explain. (As usual, random guesses won't earn any points.) Comment: Despite the presence of numbers above, this problem does not require quantitative calculations; think about the shape of $n(\lambda)$.

At the second:

Snell:

$$
\begin{aligned}
& n \sin \theta_{1}=n_{2} \sin \theta_{2} \\
& \uparrow_{\text {quant }} \int_{\text {vac. } n=1} \\
& \rightarrow \sin \theta_{2}=n_{\text {quart }} \sin \theta_{1}
\end{aligned}
$$

* So langer $n_{\text {quarts }} \rightarrow$ larger $\sin \theta_{2} \rightarrow$ langer θ_{2}
we see that blue \rightarrow lager angles,
so blue (small λ) must have higher' n than ed.
\Rightarrow plot A is correct .
(3, 4 pts.) 3-slit interference. Consider light diffracted by a barrier with two slits of negligible width. The setup is the usual one: a plane wave of wavelength λ is incident from the left; the separation between the slits is D; we're concerned with the intensity hitting a far-off screen to the right. (See the figure.) Also as usual, consider small θ.

A detector is placed on the screen at the smallest positive angular position θ for which the intensity is zero. Call this angle θ^{*}.

Mr. K carves a new slit halfway between the two existing slits. (The new slit is also of negligible width.) The detector position is unchanged. Will the intensity measured by the detector at θ^{*} be zero, maximal, or something in between? (Note: if it's something in between, you don't have to calculate what than "something" is.)

Intensity minimum $\rightarrow \frac{1}{2} \lambda$ path length difference

New slit.
Two approaches (wither is fine):
(i) Sit "\#3" crates a path berth difference

$$
\frac{D}{2} \sin \theta^{*} \text { with respect to } \# 1 \quad \& \Leftrightarrow 2
$$

$\frac{P}{2} \sin \theta^{*}=\frac{\lambda}{4}$ - withe an integer no er nor half-integer multiple of λ
\Rightarrow neither max.nor zew intensity@ θ^{*}
(ii) 3-slit $I(\theta)=I_{0} \frac{\sin ^{2}\left(3 \pi\left(\frac{p}{2}\right) \sin \theta / \lambda\right)}{\sin ^{2}\left(\pi\left(\frac{p}{2} \sin \theta / \lambda\right)\right.}$ (slit separation)

$$
\theta=\theta^{*}: I\left(\theta^{*}\right)=\frac{I_{0} \sin ^{2}(3 \pi / 4)}{\sin ^{2}(\pi / 4)}=I_{0} \frac{(1)}{(1)}
$$

Not a zero, nor a max $\left(\frac{0}{0}\right)$.
\Rightarrow "inbefween" intensity.
(4, 8 pts.) Keplerian Telescope. Consider the pair of thin glass ($n=1.5$) lenses in air, as shown below. This arrangement is known as a Keplerian Telescope. The first, a planar-convex lens, has a radius of curvature $\left|R_{A}\right|=20 \mathrm{~cm}$ on the curved side. The second, also a planar-convex lens, has a radius of curvature $\left|R_{B}\right|=80 \mathrm{~cm}$ on the curved side.

separation
Suppose a plane wave is incident from the left, as indicated by the rays drawn, and we want a plane wave to exit from the right, as drawn.
(a, 6 pts.) What separation, d, must the lenses have? Express your answer (i) symbolically in terms of n, R_{A}, and R_{B}, and (ii) numerically given the above parameters. Suggestion: Consider each lens independently, and see also part (b).

$$
\begin{aligned}
& \text { Thin lens: } \frac{1}{s_{0}}+\frac{1}{s_{i}}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) . \\
& \text { Lens (: } \quad R_{1}=\infty, R_{2}=R_{A}=-20 \mathrm{~cm} . \quad S_{0}=\infty \\
& \\
&
\end{aligned}
$$

lens 2: $R_{1}=+80 \mathrm{an}^{=R_{B}}, R_{2}=\infty . \quad S_{i}=\infty . \quad S_{0}=d-s_{0,1}$

$$
\Rightarrow \frac{1}{d-S_{0,1}}+\frac{1}{\infty}=(n-1)\left(\frac{1}{R_{B}}\right) \rightarrow d-S_{0,1}=\frac{R_{B}}{n-1}
$$

$$
\rightarrow d=S_{0,1}+\frac{R_{B}}{n=1}=+40 \mathrm{~cm}+\frac{+80 \mathrm{~cm}}{0.5}=200 \mathrm{~cm} .
$$

$$
d=\frac{\left(-R_{A}+R_{B}\right)}{(n-1)} ; d=200 \mathrm{~cm}
$$

(b, 2 pts.) Draw a diagram of the lenses that includes the rays in between the lenses, and indicate any real or virtual image points.

